Leçon 239 - Fonctions définies par une intégrale dépendant d'un paramètre. Exemple et applications.

 (X, \mathbb{A}, μ) est un espace mesuré, et E un espace métrique. On considère $f: E \times X \to \mathbb{C}$ mesurable en x et on étudie $F(t) := \int_X f(t, x) d\mu(x)$.

1. Etude de la régularité. —

1. Continuité. —

- Théorème de continuité des intégrales à paramètre : Si f(.,x) est presque sûrement continue en t, et si pour tout K compact de E on a une fonction g intégrable telle que $|f(t,x)| \le |g(x)|$ sur $K \times E$, alors F est continue sur E.
- Rem : C'est une application du théorème de convergence dominée.
- Ex : Pour $f:[a,b]\to\mathbb{C}$ continue, $\int_a^t f(x)dx$ est continue en t.
- Ex: La fonction $\Gamma: z \mapsto \int_0^{+\infty} x^{z-1} e^{-z} dx$ est continue sur $\{Re(z) > 0\}$.
- App : Dans le cas où $X=\mathbb{N}$ et où μ est la mesure de comptage, on obtient le théorème de continuité des séries de fonctions continues.
- Contre-ex: $F(t) = \int_0^{+\infty} xe^{-tx} dx$ n'est pas continue en 0.

2. Dérivabilité. —

- Théorème de dérivabilité des intégrales à paramètre : Ici, E =I intervalle de \mathbb{R} . Si f(.,x) est presque sûrement dérivable en t, si f(t,.) est intégrable pour tout t, et si pour tout K compact de E on a une fonction g intégrable telle que $|\frac{\partial f}{\partial t}(t,x)| \leq |g(x)| \text{ sur } K \times E$, alors F bien définie sur I et dérivable sur I, de dérivée $F'(t) = \int_X \frac{\partial f}{\partial t}(t,x) d\mu(x)$.
- Rem : Ce résultat se généralise au cas D^k et C^k .
- Ex : La fonction $\Gamma: z \mapsto \int_0^{+\infty} x^{z-1} e^{-z} dx$ est de classe C^{∞} sur $]0, +\infty[$.
- App : Dans le cas où $X=\mathbb{N}$ et où μ est la mesure de comptage, on obtient le théorème de dérivabilité des séries de fonctions continues.
- Contre-exemple.
- $\operatorname{Ex}: \int_0^{+\infty} \frac{\sin(tx)}{x} e^{-x} dx = \operatorname{artcan}(t)$
- Ex : Formule sommatoire de Poisson : Soit f de classe C^1 telle telle que $f(x) = O(\frac{1}{x^2})$ et $f'(x) = O(\frac{1}{x^2})$.
 - Alors la fonction $S(t) = \sum_{n=-\infty}^{+\infty} f(t+n)$ est bien définie, continue, et 1-périodique, et la fonction $f^*(n) = \int_{\mathbb{R}} f(x).e^{-2i\pi nx}dx$ est bien définie, et l'on a :
 - $S(t) = \frac{1}{a} \sum_{m=-\infty}^{+\infty} f^*(n) e^{im2\pi t}$
- Corollaire du Gourdon.
- Ex: La fonction $F(t) = \frac{1}{\pi} \int_0^{\pi} \cos(t \sin(x)) dx$ est une solution de l'équation de Bessel xy''(t) + y'(t) + xy(t) = 0.

3. Holomorphie. —

– Théorème d'holomorphie des intégrales à paramètres : Ici, $E = \Omega$ ouvert de \mathbb{C} . Si f(.,x) est presque sûrement holomorphe en t, si f(t,.) est intégrable pour tout t, et si

- pour tout K compact de E on a une fonction g intégrable telle que $\left|\frac{\partial f}{\partial t}(t,x)\right| \leq |g(x)|$ sur $K \times E$, alors F bien définie sur I et holomorphe sur I.
- Ex: La fonction $\Gamma: z \mapsto \int_0^{+\infty} x^{z-1} e^{-z} dx$ est holomorphe sur $\{Re(z) > 0\}$.
- Contre-exemple.
- ${\bf Dev}$: Formule des compléments : Pour tout z tel que 0< Re(z)<1, on a : $\Gamma(z).\Gamma(1-z)=\frac{\pi}{\sin(\pi.z)}.$

Ainsi, la fonction $g: z \mapsto \frac{\pi}{\sin(\pi.z)} \cdot \frac{1}{\Gamma(1-z)}$ définie sur $\{z \text{ tq } Re(z) > 1\} - \{-n, n \in \mathbb{N}\}$ est analytique et coïncide avec Γ sur $\{z \text{ tq } 0 < Re(z) < 1\}$.

Cela permet de prolonger Γ analytiquement à $\mathbb{C} - \{-n, n \in \mathbb{N}\}$.

2. Convolution. —

- 1. Convolution et régularisation.
 - Def : Pour $f, g : \mathbb{R} \to \mathbb{C}$ mesurables positives, on définit $f * g(x) := \int_{\mathbb{R}} f(y)g(x y)d\lambda(y) \in [0, +\infty].$
 - Pro : Si ces quantités sont finies, on a f * g = g * f et f * (g * h) = ((f * g) * h)
 - Inégalité de Young pour la convolution : Pour $1 = \frac{1}{p} + \frac{1}{q}$ et $f \in L^p$, $g \in L^q$, on a $||f * g||_1 \le ||f||_p \cdot ||g||_q$.
 - Rem : On peut aussi convoler $f \in L^1_{loc}(\mathbb{R})$ avec $g \in L^{\infty}(\mathbb{R})$.
 - Pro : L^1 muni de * est donc une \mathbb{K} -algèbre commutative.
 - Pro : L^1 ne possède pas d'unité.
 - Pour $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p$, $g \in L^q$, f * g est continue sur \mathbb{R} .
- 2. Approximations de l'unité.
 - Def : Approximation de l'unité : Une suite $(f_n)_n$ est appelée approximation de l'unité si : $\int_{\mathbb{R}} f_n(x) d\lambda(x) = 1$, si $f_n \geq 0$, et si $\forall \varepsilon$, $\int_{|x| > \varepsilon} f_n(x) d\lambda(x) \to_n 0$.
 - Ex : Pour $f(x) = \frac{1}{x^1+1}$, $f_n(x) = \frac{1}{n\pi}f(nx)$ est une approximation de l'unité.
 - Pro : Pour $(f_n)_n$ approximation de l'unité et $g \in L^1$, $f_n * g \to_{\|.\|_1} g$. Si $f_n \in L^q$, cela est aussi vrai pour $g \in L^p$ avec $p = \frac{q}{q-1}$.
 - Pro : Régularisation par convolution : Pour f de classe C^k dans L^p et $g \in L^q$ avec $q = \frac{p}{p-1}$, alors f * g est de classe C^k par théorème de dérivation des intégrales à paramètres. La régularité de la convolée ne porte que sur la régularité d'un seul terme.
 - Cor : C_c^{∞} est dense dans L^p . (On convole une suite approximation de l'unité qui soit C_c^{∞})
 - Def : $\mathbb{T} := \mathbb{R}/2\pi\mathbb{Z}$, $e_n(t) = e^{int}$, $D_N := \sum_{n=-N}^N e_n$, $F_N := \frac{1}{N}$. $\sum_{n=0}^{N-1} D_n$. Théorème de Féjer : La suite des F_N est une approximation de l'unité et $F_N * f = 1$
 - Théorème de Féjer : La suite des F_N est une approximation de l'unité et $F_N * f = \frac{1}{N} \sum_{n=0}^{N-1} S_n(f)$ converge uniformément vers f pour tout f $2\pi p$ ériodique continue. Si f admet juste une limite à droite et à gauche en tout point, alors $F_N * f(x) \to_N \frac{1}{2}(f(x^+) + f(x^-))$ ponctuellement.
 - App : La famille des $(e_n)_{n∈ℤ}$ est une base Hilbertienne de $L^2(𝕋)$ l'espace des classes de fonctions 2π-périodiques et de carré intégrable.

- Théorème de Dirichlet : Si f est C^0 et C^1 par morceaux, alors la série de Fourier Zuily, Queffélec : Th de cont des IàP, Th de dériv des IàP, Th d'holom des IàP. Applicade f converge uniformément vers f. Si f est juste C^1 par morceaux, alors la série de Fourier de f converge uniformément vers $x \to \frac{1}{2}(f(x^+) + f(x^-))$.
- Dev : Equation de la chaleur sur le cercle : Pour $u_0 \in L^2(\mathbb{R}/2\pi\mathbb{Z})$, l'équation différentielle $\partial_t u - \partial_x(\partial_x u) = 0$ sur $]0, +\infty[\times \mathbb{R}/2\pi\mathbb{Z}]$ admet une unique solution f de classe C^2 telle que $f(t, \cdot) \to_{t\to 0^+} u_0$ dans $L^2(\mathbb{R}/2\pi\mathbb{Z})$ de la forme f(x, t) = $(u_0 * K_t)(x)$ pour $K_t(x) = \sum_{n \in \mathbb{Z}} e^{-n^2 t} e^{inx}$.

3. Transformations de Fourier et de Laplace. —

- 1. Transformation de Fourier.
 - Def: Pour $f \in L^1(\mathbb{R})$, $\widehat{f}(x) = \int_{\mathbb{R}} e^{-ixy} f(y) dy$.
 - Pro : \widehat{f} est uniformément continue et bornée par $||f||_1$.
 - Thm: $\widehat{f}(x) \to 0$ quand $x \to \pm \infty$. (Démontré avec la densité des fonctions C_a^1)
 - Pro : On a $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$. La transformée de Fourier linéarise la convolution.
 - Pro : Si $x^k f(x) \in L^1$, on a $\widehat{f}(x) \in C^k$, avec $\widehat{f}^{(k)}(x) = (-i)^k \int_{\mathbb{R}} e^{-ixy} y^k f(y) dy$.
 - Pro : Si $f, f' \in L^1$, alors $\widehat{f}'(x) = -ix\widehat{f}(x)$
 - Pro: Théorème d'inversion de Fourier: La transformée de Fourier est une bijection bicontinue sur $S(\mathbb{R})$, et on peut calculer son inverse.
 - Rem : Ainsi, la transformée de Fourier est injective sur L^1 .
 - App: Les polynômes orthogonaux.
 - Def : Fonction caractéristique Φ_X d'une v.a. réelle X.
 - Pro : Si X est de densité $dP_X(x) = f(x)dx$ alors $\Phi_X = \hat{f}$.
 - Pro : L'injectivité de la transformée de Fourier implique que Φ_X caractérise la loi de X.
 - Pro : Si X admet un moment d'ordre k, alors Φ_X est de classe C^k . Réciproquement, si Φ_X est de classe C^k , alors X admet un moment d'ordre $2 \left| \frac{k}{2} \right|$.
 - Théorème de Lévy : Une suite de v.a rélles $(X_n)_n$ converge en loi vers une v.a. X ssi Φ_{X_n} converge simplement vers Φ_X .
 - App : Théorème Central de la limite.
 - Ex : Fonctions caractéristiques de v.a. classiques.
- 2. Transformation de Laplace.
 - Pommellet, Madère: Des choses sur la transformation de Laplace hors probabilités.
 - Def: Transformation de Laplace. (Barbe, Ledoux)
 - Ex:
 - Pro : La transformée de Laplace de X caractérise la loi de X.
 - Pro : La transformée de Laplace de X est analytique sur l'intervalle sur lequel elle est bien définie.
 - Ex : Processus de Galton-Watson. On utilise la transformée de Laplace de X pour étudier la proba d'extinction en temps fini.

Références

tion à la fonction Γ .

Hauchecorne: Contre-Exemples d'IàP non continues/dérivables/holom en un point.

Briane, Pagès: Produit de convolution. Transormation de Fourier.

Objectif Agrégation : Polynômes orthogonaux. The de régularisation du produit de convolution. Approximations de l'unité, Th de Féjer, Th de Dirichlet.

Gourdon : Exemples d'IàP de classe C^{∞} . Formule sommatoire de Poisson.

Amar-Materon: Formule des compléments.(Dev)

Candelpergler: Equation de la chaleur sur le cercle.(Dev)

Ouvrard: Fonction caractéristique, Fonction caractéristique et moments, exemples, Th de Lévy, TCL.

Pommellet, Madère, Barbe, Ledoux: Transformation de Laplace.

June 11, 2017

Vidal Agniel, École normale supérieure de Rennes